
C H A P T E R 12

Some Applications of the
Fundamental Theorem

1. Introduction

The theorem discussed in the previous chapter establishes important no-arbitrage conditions that
permit pricing and risk management using Martingale methods. According to these conditions,
given unique arbitrage-free state prices, we can obtain a synthetic probability measure,P̃ , under
which all asset prices normalized by a particularZt become Martingales. LettingC(St, t)
represent a security whose price depends on an underlying riskSt, we can write,

C(St, t)
Zt

= EP̃
t

[
C(ST , T )

ZT

]
(1)

As long as positive state prices exist,manysuch probabilities can be found and each will be
associated with a particular normalization. The choice of the right working probability then
becomes a matter of convenience and data availability.

The equality in equation (1) can be evaluated numerically using various methods. The
arbitrage-free priceSt can be calculated by evaluating the expectation and then multiplying
by Zt. But to evaluate the expectation, we would need the probabilityP̃ , hence, this must be
obtained first. A further desirable characteristic is that the future value,ZT , beconstant, as it
would be in the case of a default-free bond that matures at timeT . Hence,T maturity bonds are
good candidates for normalization.

In this chapter we showthreeapplications of the fundamental theorem. The first applica-
tion is theMonte Carloprocedure which can be interpreted as a general method to calculate
the expectation in (1). This method can be applied straightforwardly when instruments under
consideration are ofEuropeantype. The procedure uses the tools supplied by the fundamental
theorem together with the law of large numbers.1

1 Letxi, i = 1, . . . N be independent, identically distributed observations from a random variableX with a finite
first-order moment:

E[X] < ∞
Then, according to the law of large numbers,1

N

∑N
i=1 xi converges almost surely toE[X] asN gets large.
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346 C H A P T E R 12. Some Applications of the Fundamental Theorem

The second application of the fundamental theorem involvescalibration. Calibration is the
selection of model parameters using observed arbitrage-free prices from liquid markets. The
chapter discusses simple examples of how to calibrate stochastic differential equations and tree
models to market data using the fundamental theorem. This is done within the context of the
Black-Derman-Toy (BDT) model.

The third application of the fundamental theorem introduced in Chapter 11 is more concep-
tual in nature. We usequanto assetsto show how the theorem can be exploited in modeling.
Quanto assets provide an excellent vehicle for this, since their pricing involves switches between
domestic and foreign risk-neutral measures. Techniques for switching between measures are an
integral part of financial engineering, and will be discussed further in the next chapter. The
application to quantos provides the first step.

Before we discuss these issues, a note of caution is in order. The discussion in this chapter
should be regarded as an overview that presents examples for when to use the fundamental
theorem, instead of being a source of how to implement such numerical techniques. Calculations
using Monte Carlo or calibration are complex numerical procedures, and a straightforward
application may not give satisfactory results. Interested readers can consult the sources provided
at the end of the chapter.

2. Application 1: The Monte Carlo Approach

Consider again the expectation involving afunctionC(St, t) of the underlying riskSt under a
working Martingale measure,̃P :

C(St, t)
Zt

= EP̃
t

[
C(ST , T )

ZT

]
(2)

where,St andZt are two arbitrage-free asset prices at timet. TheZt is used as the normalizing
asset, and is instrumental in defining theP̃ . The C(St, t) may represent a European option
premium or any other derivative that depends onSt with expirationT .

This equation can be used as a vehicle to calculate a numerical value forC(St, t), if we
are given the probability measurẽP and if we knowZt. There are two ways of doing this.
First, we can try to solve analytically for the expectation and obtain the resultingC(St, t) as a
closed-form formula. When the current value of the normalizing asset,Zt, is known, this would
amount to taking the integral:

C(St, t) = Zt

[∫ ∞

−∞

∫ ∞

−∞

C(ST , T )
ZT

f̃(ST , ZT )dST dZT

]
(3)

wheref̃ (.) is the joint conditional probability density function ofST , ZT in terms of theP̃
probability.2 TheZT on the right-hand side is considered to be random and possibly correlated
with ST . As a result, the probabilitỹP would apply to both random variables,ST andZT .

With judicious choices ofZt, we can however, makeZT a constant. For example, if we
chooseZt as the default-free discount bond that matures at timeT ,

ZT = 1 (4)

It is clear that such normalization greatly simplifies the pricing exercise, since thef̃ (.) is then
a univariate conditional density.

2 We assume that̃f(ST , ZT ) exists.
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But, even with this there is a problem with the analytical method. Often, there areno
closed-form solutions for the integrals, and a nice formula tyingSt to Zt and other parameters
of the distribution functionP̃ may not exist. The value of the integral can still be calculated,
although not through a closed-form formula. It has to be evaluatednumerically.

One way of doing this is the Monte Carlo method.3 This section briefly summarizes the
procedure. We begin with a simple example. Suppose a random variable,4 X, with a known
normal distribution denoted byP , is given:5

X ∼ N(μ, σ) (5)

Suppose we have a known functiong(X) of X. How would we calculate the expecta-
tion EP [g(X)], knowing thatEP [g(X)] < ∞? One way, of course, is by using the analytical
approach mentioned earlier. Take theintegral

EP [ g(X)] =
∫ ∞

−∞
g(x)

(
1√

2πσ2
e− 1

2σ2 (x−μ)2
)

dx (6)

if a closed-form solution exists.
But there is a second, easier way. We can invoke thelaw of large numbersand realize that

given a large sample of realizations ofX, denoted byxi, the sample mean of any function of the
xi, sayg(xi), will be close to the true expected valueEP [g(X)]. So, the task of calculating an
arbitrarily good approximation ofEP [g(X)] reduces to drawing a very large sample ofxi from
the right distribution. Using random number generators, and the known distribution function of
X, we can obtainN replicas ofxi. These would be generated independently, and the law of
large numbers would apply:

1
N

N∑
i=1

g(xi) → EP [g(X)] (7)

The conditionEP [g(X)] < ∞ is sufficient for this convergence to hold. We now put this dis-
cussion in the context of asset pricing.

2.1. Pricing with Monte Carlo

With the Monte Carlo method, an expectation is evaluated by first generating a sequence of
replicas of the random variable of interest from a prespecified model, and then calculating the
sample mean. The application of this method to pricing equations is immediate. In fact, the
fundamental theorem provides the risk-neutral probability,P̃ , such that for any arbitrage-free
asset priceSt,

St

Bt
= EP̃

t

[
ST

BT

]
(8)

Here, the normalizing variable denoted earlier byZt is taken to be a savings account and is now
denoted byBt. This asset is defined as

Bt = e
∫ t
0 rudu (9)

3 The other is the PDE approach, where we would first find the partial differential equation that corresponds to
this expectation and then solve the PDE numerically or analytically. This method will not be discussed here. Interested
readers should consider Wilmott (2000), and Duffie (2001).

4 Here the equivalent ofX is ST /BT .

5 In the preceding, the equivalent is̃P .
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ru being the continuously compounded instantaneous spot rate. It represents the time-t value of
an investment that was one dollar at timet = 0. The integral in the exponent means that theru

is not constant duringu ∈ [t, T ]. If rt is a random variable, then we will needjoint conditional
distribution functions in order to select replicas ofST andBT . We have to postulate amodel
that describes the joint dynamics ofST , BT and that ties the information at timet to the random
numbers generated for timeT . We begin with a simple case wherert is constant atr.

2.1.1. Pricing a Call with Constant Spot Rate

Consider the calculation of the price of aEuropeancall option with strikeK and expirationT
written on theSt, in a world where all Black-Scholes assumptions are satisfied. Using theBt

in equation (9) as the normalizing asset, equation (8) becomes

C(t)
ert

= EP̃
t

[
C(T )
erT

]
(10)

where theC(t) denotes the call premium that depends on theSt t, K, r and σ.After simplifying
and rearranging

C(t) = e−r(T−t)EP̃
t [C(T )] (11)

where

C(T ) = max[ST − K, 0] (12)

The Monte Carlo method can easily be applied to the right-hand side of equation (11) to obtain
theC(t).

Using the savings account normalization, we can write down thediscretizedrisk-neutral
dynamics forSt for discrete intervals of size0 < Δ:

St+Δ = (1 + rΔ)St + σSt(ΔWt) (13)

where it is assumed that the percentage volatilityσ is constant and that the disturbance term,
ΔWt, is a normally distributed random variable with mean zero and varianceΔ:

ΔWt ∼ N(0, Δ) (14)

Ther enters the SDE due to the use of the risk-neutral measureP̃ . We can easily calculate
replicas ofST using these dynamics:

1. Select the size ofΔ, and then use a proper pseudo-random number generator, to generate
the random variableΔWt from a normal distribution.

2. Use the current valueSt, the parameter valuesr, σ, and the dynamics in equation (13)
to obtain theN terminal valuesSj

T , j = 1, 2, . . . , N . Herej will denote a random path
generated by the Monte Carlo exercise.

3. Substitute these into the payoff function,

C(T )j = max[Sj
T − K, 0] (15)

and obtainN replicas ofC(T )j .
4. Finally, calculate the sample mean and discount it properly to get theC(t):

C(t) = e−r(T−t) 1
N

N∑
j=1

C(T )j (16)
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This procedure gives the arbitrage-free price of the call option. We now consider a simple
example.

Example:

Consider pricing the following European vanilla call written onSt, the EUR/USD
exchange rate, which follows the discretized (approximate) SDE:

Sj
ti

= Sj
ti−1

+ (r − rf )Sj
ti−1

Δ + σSj
ti−1

√
Δ εj

i (17)

where the drift is the differential between the domestic and foreign interest rate.

We are given the following data on a call with strikeK = 1 .0950 :

r = 2% rf = 3% t0 = 0, T = 5 days St0 = 1.09 σ = .10 (18)

A financial engineer decides to selectN = 3 trajectories to price this call. The discrete
interval is selected asΔ = 1 day.

The software Mathematica provides the following standard normal random numbers:

{0.763, 0.669, 0.477, 0.287, 1.81, −0.425} (19)

{1.178, −0.109, −0.310, −2.130, −0.013, 0.421141} (20)

{−0.922, 0.474, −0.556, 0.400, −0.890, −2.736} (21)

Using these in the discretized SDE,

Sj
i =

(
1 + (.02 − .03)

1
365

)
Sj

i−1 + .10Sj
i−1

√
1

365
εj
i (22)

we get the trajectories:

Path Day 1 Day 2 Day 3 Day 4 Day 5

1 1.0937 1.0965 1.0981 1.1085 1.1060
2 1.0893 1.0875 1.0754 1.0753 1.0776
3 1.0927 1.08946 1.0917 1.086 1.0710

For the case of a plain vanilla euro call, with strikeK = 1 .095 , only the first trajectory
ends in-the-money, so that

C(T )1 = .011, C(T )2 = 0, C(T )3 = 0 (23)

Using continuous compounding the call premium becomes

C(t) = Exp
(

−.02
5

365

)
1
3
[.011 + 0 + 0] (24)

C(t) = .0037 (25)

Obviously, the parameters of this model are selected to illustrate the application of the Monte
Carlo procedure, and no real-life application would price securities with such a small number of
trajectories. However, one important wrinkle has to be noticed. The drift of this SDE was given
by (r−rf )StΔ and not byrStΔ, which was the case of stock price dynamics. This modification
will be dealt with below. Foreign currencies pay foreign interest rates and the risk-free interest
rate differentials should be used. We discuss this in more detail in the next section.
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2.2. Pricing Binary FX Options

This section applies the Monte Carlo technique to pricing digital or binary options in foreign
exchange markets. We consider the following elementary instrument:

If the price of a foreign currency, denoted bySt, exceeds the levelK at expiration,
the option holder will receive the payoffR denoted indomesticcurrency. Otherwise
the option holder receives nothing. The option is of European style, and has expiration
dateT . The option will be sold forC(t).

We would like to price thisbinaryFX option using Monte Carlo. However, because the under-
lying is an exchange rate, some additional structure needs to be imposed on the environment
and we discuss this first. This is a good example of the use of the fundamental theorem. It also
provides a good occasion to introduce some elementary aspects of option pricing in FX markets.

2.2.1. Obtaining the Risk-Neutral Dynamics

In the case of vanilla options written on stock prices, we assumed that the underlying stock pays
no dividends and that the stock price follows a geometric continuous time process such as

dSt = μStdt + σStdWt (26)

with μ being an unknown drift coefficient representing the market’s expected percentage appre-
ciation of the stock, andσ being a constant percentage volatility parameter whose value has to
be obtained.Wt, finally, represents a Wiener process.

Invoking the fundamental theorem of asset pricing, we then replaced the unknown drift
termμ by the risk-free interest rater assumed to be constant. In the case of options written on
foreign exchange rates, some of these assumptions need to be modified. We can preserve the
overall geometric structure of theSt process, but we have to change the assumption concerning
dividends. A foreign currency is, by definition, some interbank deposit and will earn foreign
(overnight) interest. According to the fundamental theorem, we can replace the real-world drift
μ by theinterest rate differential, rt − rf

t , whererf
t is the foreign instantaneous spot rate and

rt is, as usual, the domestic rate. Thus, if spot rates are constant,

rt = r, rf
t = rf ∀t (27)

This gives the arbitrage-free dynamics:6

dSt = (r − rf )Stdt + σStWt t ∈ [0, ∞) (28)

The rationale behind using the interest ratedifferential, instead of the spot rater, as the
risk-neutral drift is a direct consequence of the fundamental theorem when the asset considered
is a foreign currency. Since this chapter is devoted to applications of the fundamental theorem,
we prefer to discuss this briefly.

Using the notation presented in Chapter 11, we takeSt as being the number of dollars paid for
one unit of foreign currency. The fundamental theorem of asset pricing introduced in Chapter 11
implies that we can use the state prices{Qi} for statesi = 1, . . . , n, and write

St =
n∑

i=1

(1 + rfΔ)Si
T Qi (29)

6 If the rt, r
f
t were stochastic, this would require generating simultaneously random replicas of future rates as well.

We would need to model interest rate dynamics.
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According to this, one unit of foreign currency will be worthSi
T dollars in statei of timeT ,

and it will also earnrf per annum in interest during the periodΔ = T − t. Normalizing with
thedomesticsavings account, this becomes

St =
n∑

i=1

(1 + rfΔ)
(1 + rΔ)

Si
T (1 + rΔ)Qi (30)

We now choose the risk-neutral probabilities as

p̃i = (1 + rΔ)Qi (31)

and rearrange equation (30) to obtain the expected gross return ofSt duringΔ

(1 + rΔ)
(1 + rfΔ)

= EP̃
t

[
ST

St

]
(32)

Here, the left-hand side can be approximated as7

(1 + rΔ − rfΔ) (33)

which means that theSt is expected to change at an annual rate of(r − rf ) under the risk-
neutral probabilityP̃ . This justifies the continuous time risk-neutral drift of the dynamics:

dSt = (r − rf )Stdt + σStdWt (34)

Now that the dynamics are specified, the next step is selecting the Monte Carlo trajectories.

2.2.2. Monte Carlo Process

Suppose we would like to price our digital option in such a framework. How could we do this
using the Monte Carlo approach? Given that the arbitrage-free dynamics forSt are obtained,
we can simply apply the steps outlined earlier.

In particular, we need to generate random paths starting from the known current value for
St. This can be done intwo ways. We can first solve the SDE in equation (34) and then select
random replicas from the resulting closed-form formula, if any. The second way is to discretize
the dynamics in equation (34), and proceed as discussed in the previous section. Suppose we
decided to proceed by first choosing a discrete intervalΔ, and thendiscretizingthe dynamics:8

St+Δ = St + (r − rf )StΔ + σStΔWt (35)

The next step would be to use a random number generator to obtainN sequences of standard
normal random variables{εj

i , i = 1, . . . , k, j = 1 . . . , N} and then calculate theN simulated
trajectories using the discretized SDE:

Sj
ti

= Sj
ti−1

+ (r − rf )Sj
ti−1

Δ + σSj
ti−1

√
Δεj

i (36)

where the superscriptj denotes thejth simulated trajectory and whereΔ = ti − ti−1.

7 This can be done by using a first-order Taylor series approximation.

8 Discretization of stochastic differential equations is a nontrivial exercise and there are optimal ways of doing
these. Here, we ignore such numerical complications. Interested readers can consult Kloeden and Platen (1999).
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Once the paths{Sj
ti

} are obtained, the arbitrage-free value of the digital call option premium
C(t) that paysR at expiration can be found by using the equality

C(t) = Re−r(T−t)EP̃
t

[
I{ST >K}

]
(37)

where the symbolI{ST > K} is the indicator function that determines whether at timeT , theST

exceedsK or not:

I{ST >K} =

{
1 if ST > K

0 Otherwise
(38)

This means thatI{ST >K} equals one if the option expires in-the-money; otherwise it is zero.
According to the expected payoff in equation (37), the arbitrage-freeC(t) depends on the value
of EP̃

t [I{ST >K}]. The latter can be written as

EP̃
t [IST >K ] = Prob(ST > K) (39)

Thus

C(t) = Re−r(T−t)Prob(ST > K) (40)

This equation is easy to interpret. The value of the digital option is equal to the risk-neutral
probability thatST will exceedK times the present value of the constant payoffR.9

Under these conditions, the role played by the Monte Carlo method is simple. We generate
N paths for the exchange rate starting from the current observationSt, and then calculate the
proportionof paths that would end up above the levelK. Once this tally is made, denoting this
number bym, the arbitrage-free value of the option will be

C(t) = e−r(T−t)R (Prob(ST > K)) (41)

∼= e−r(T−t)R
(m

N

)
(42)

Thus, in this case the Monte Carlo method is used to calculate a special expected value,
which is the risk-neutral probability of the event{ST > K}. The following section discusses
two examples.

2.3. Path Dependency

In the examples discussed thus far, we used the Monte Carlo method to generatetrajectoriesfor
an underlying riskSt, yet considered only the time-T values of these trajectories in calculating
the desired quantityC(St, t). The other elements of the trajectory were not directly used in
pricing.

This changes if the asset under consideration makes interim payouts or is subject to some
other restrictions as in the case of barrier options. WhenC(St, t) denotes the price of a barrier
call option with barrierH, the option may knock in or out depending on the eventSu < H during
the periodu ∈ [t, T ]. Consider the case of a down-and-out call. In pricing this instrument, once
a Monte Carlo trajectory is obtained, thewholetrajectory needs to be used to determine if the
conditionSu < H is satisfied by theSj

u during the entire trajectory. This is one example of

9 The interest rate differential governs arbitrage-free dynamics, but the discounting needs to be done using the
domestic rate only.
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the class of assets that are path dependent and hence require direct use of entire Monte Carlo
trajectories.

We now provide two more examples of the application of the Monte Carlo procedure. In
the first case the procedure is applied to a vanilla digital option, and in the second example, we
show what happens when the option is a down-and-out call.

Example:

Consider pricing a digital option written onSt, the EUR/USD exchange rate with the
same structure as in the first example. The digital euro call has strikeK = 1 .091 and
pays$100 if it expires in-the-money. The parameters are the same as before:

r = 2%, rf = 3%, t0 = 0, t = 5 days, St0 = 1.09, σ = .10 (43)

The paths forSt are given by

Path Day 1 Day 2 Day 3 Day 4 Day 5

1 1.0937 1.0965 1.0981 1.1085 1.1060
2 1.0893 1.0875 1.0780 1.0850 1.092
3 1.0927 1.08946 1.0917 1.086 1.0710

The digital call expires in-the-money if1 .091 < Sj
T . There are two incidences of this

event in the previous case, and the estimated risk-neutral probability that the option
expires in-the-money is23 . The option value is calculated as

C(t) = Exp

(
−.02

5
365

)
2
3
[100] (44)

C(t) = $66.6 (45)

Now, consider what happens if we add a knock-out barrierH = 1.08. The digital call knocks
out if St falls below this barrier before expiration.

Example:

All parameters are the same as in the first example, and the paths are given by

Path Day 1 Day 2 Day 3 Day 4 Day 5

1 1.0937 1.0965 1.0981 1.1085 1.1060
2 1.0893 1.0875 1.0780 1.0850 1.092
3 1.0927 1.08946 1.0917 1.086 1.0710

The digital knock-out call requires that1 .091 < Sj
T and that the trajectory never falls

below 1.08. Thus, there is only one incidence of this in this case and the value of the
option is calculated as

C(t) = Exp

(
−.02

5
365

)
1
3
[100] (46)

C(t) = $33.3 (47)
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Hence, the digital option is cheaper. Also, note that in the case of vanilla call, only the terminal
values were used to calculate the option value, whereas in the case of the knock-out call, the
entire trajectory was needed to check the conditionH < St.

2.4. Discretization Bias and Closed Forms

The examples on the Monte Carlo used discrete approximations of SDEs. Assuming that the
arbitrage-free dynamics of an asset priceSt can be described by a geometric SDE,

dSt = rStdt + σStdWt t ε [0, ∞) (48)

we selected an appropriate time intervalΔ, and ignoring continuous compounding, discretized
the SDE

St+Δ = (1 + rΔ)St + σSt(ΔWt) (49)

Equation (49) is only anapproximationof the true continuous time dynamics given by (48).
For some special SDEs, wecansample the exactSt. In such special cases, the stochastic

differential equation forSt can be “solved” for a closed form. The geometric process shown in
Equation (48) is one such case. We can directly obtain the value ofST using the closed-form
formula:

ST = St0e
r(T−t0)− 1

2 σ2(T−t0)+σ(WT −Wt0 ) (50)

The term(WT − Wt0) will be normally distributed with mean zero and varianceT − t0.
Hence, by drawing replicas of this random variable, we can obtain exact replicas forST at
anyT, t0 < T . It turns out that even in the case of a mean-reverting model, such closed-form
formulas are available and lend themselves to Monte Carlo pricing. However, in general, we
may have to use discretized SDEs that may contain a discretizationbias.10

2.5. Real-Life Complications

Obviously, Monte Carlo becomes a complex approach once we go beyond simple examples.
Difficulties arise, yet significant improvements can be made in regard to (1) how to select ran-
dom numbers with computers, (2) how to trick the system, such that the greatest accuracy can
be obtained in the shortest time, and (3) how to reduce the variance of the calculated prices with
a given number of random selections. For these questions, other sources should be considered;
we will not discuss them given our focus on financial engineering.11

3. Application 2: Calibration

Calibrating a model means selecting the model parameters such that the observed arbitrage-free
benchmark prices are duplicated by the use of this model. In this section we give two examples
for this procedure. Since we already discussed several examples of how the fundamental theorem
can be applied to SDEs, in this section we concentrate instead on tree models. As the last section
has shown, calibration can be done using Monte Carlo and the SDEs as well.

10 Plattenet al. (1992) discuss how such biases can be minimized. Aı̈t-Sahalia (1996) discusses this bias within a
setting of interest rate derivatives and shows how continuous time SDEs can be utilized.

11 For interested readers, an excellent introductory source on these issues is Rosset al. (2002).
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3.1. Calibrating a Tree

The Black-Derman-Toy (BDT) model is a good example for procedures that extract information
from market prices. The model calibrates future trajectories of the spot ratert. The BDT model
illustrates the way arbitrage-free dynamics can be extracted from liquid and arbitrage-free asset
prices.12

The basic idea of the BDT model is that of any other calibration methodology. Let it be
implicit binomial trees, estimation of state prices implicit in asset prices, or estimation of risk-
neutral probabilities. The model assumes that we are given a number of benchmark arbitrage-
free zero-coupon bond prices and a number of relevant volatility quotes in these markets. These
volatility quotes can come from liquid caps and floors or from swaptions that are discussed
in Chapters 15 and 21 respectively. The procedure evolves in three steps. First, arbitrage-free
benchmark securities’ prices and the relevant volatilities are obtained. Second, from these data
the arbitrage-free dynamics of the relevant variable are extracted. Finally,otherinterest-sensitive
securities are priced using these arbitrage-free dynamics.

This section illustrates the procedure using a three-periodbinomial tree. To simplify the
notation and concentrate on understanding the main ideas, this section assumes that the time
intervalsΔ in the tree equal one year, and that the day-count parameterδ in a Libor setting
equals one as well. The reader can easily generalize this simple example.

3.2. Extracting a Libor Tree

Suppose we have arbitrage-free prices of three default-free benchmark zero-coupon bonds
{B(t0, t1), B(t0, t2), B(t0, t3)}. Also suppose we observe reliable volatility quotesσi, i =
0, 1, 2 for the Libor ratesLt0 , Lt1 , Lt2 .

First note thatσ0 is by definition equal to zero, because timet0 variables have already been
observed at timet0. Next, assume that we have the following data:

σ1 = 15% (51)

σ2 = 20% (52)

B(t0, t1) = .95 (53)

B(t0, t2) = .87 (54)

B(t0, t3) = .79 (55)

From these data, we extract information concerning the futurearbitrage-freebehavior of the
Libor ratesLti . We first need some pricing functions that tie the arbitrage-free bond prices to the
dynamics of the Libor rates. These pricing functions are readily available from the fundamental
theorem.

3.2.1. Pricing Functions

Consider the fundamental theorem written for timest0 andt3. Suppose there arek states of the
world at timet3 and consider the matrix equation discussed in Chapter 11:

Skx1 = DkxkQkx1 (56)

Here,S is a(kx1) vector of arbitrage-free asset prices at timet0, D is the payoff matrix at time
t3, andQ is the(kx1) vector of positive state prices at timet3.

12 The current convention in fixed income has evolved well beyond the BDT approach in different directions. On
the one hand, there is the forward Libor model, and on the other hand, there are the trinomial interest rate models.
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Suppose the first asset is a 1-year Libor-based deposit and the second asset is the bond
B(t0, t3), which matures and pays 1 dollar att3. Then, the first two rows of the matrix equation
in (56) will be as follows:

(
1

B(t0, t3)

)
=

(
[(1 + Lt0)(1 + Lt1)(1 + Lt2)]

1 . . . [(1 + Lt0)(1 + Lt1)(1 + Lt2)]
k

1 . . . 1

)

×

⎛
⎜⎜⎜⎜⎜⎝

Q1

. . .

. . .

. . .

Qk

⎞
⎟⎟⎟⎟⎟⎠ (57)

where the[(1+Lt0)(1+Lt1)(1+Lt2)]
i represents the return to the savings account investment

in theith state of timet3. We can write the second row as

B(t0, t3) =
k∑

i=1

Qi (58)

Normalizing by the savings account, this becomes

B(t0, t3) =
k∑

i=1

[(1 + Lt0)(1 + Lt1)(1 + Lt2)]
i

[(1 + Lt0)(1 + Lt1)(1 + Lt2)]i
Qi (59)

Relabeling the risk-neutral probabilities

p̃i = [(1 + Lt0)(1 + Lt1)(1 + Lt2)]
iQi (60)

gives

B(t0, t3) =
k∑

i=1

1
[(1 + Lt0)(1 + Lt1)(1 + Lt2)]i

p̃i (61)

Thus, we obtain the pricing equation for thet3-maturity bond as:

B(t0, t3) = EP̃
t0

[
1

(1 + Lt0)(1 + Lt1)(1 + Lt2)

]
(62)

Proceeding in a similar way, we can obtain the pricing equations for the two remaining
bonds:

B(t0, t1) = EP̃
t0

[
1

(1 + Lt0)

]
(63)

B(t0, t2) = EP̃
t0

[
1

(1 + Lt0)(1 + Lt1)

]
(64)

The first equation is trivially true, sinceLt0 is known at timet0.
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3.3. Obtaining the BDT Tree

In this particular example we have three benchmark prices and two volatilities. This gives five
equations:

B(t0, t1) = EP̃
t0

[
1

(1 + Lt0)

]
(65)

B(t0, t2) = EP̃
t0

[
1

(1 + Lt0)(1 + Lt1)

]
(66)

B(t0, t3) = EP̃
t0

[
1

(1 + Lt0)(1 + Lt1)(1 + Lt2)

]
(67)

Vol (Lt1) = σ1 (68)

Vol (Lt2) = σ2 (69)

Once we specify a model for the dynamics of theLti , we can solve these equations to obtain
the arbitrage-free paths forLti .

3.3.1. Specifying the Dynamics

We now obtain this arbitrage-free dynamics. Following the tradition in tree models, we simplify
the notation and use the indexi = 0, 1, 2, 3 to denote “time,” and the lettersu andd to represent
the up and down states at each node. First note that we have five equations and, hence, we can
at most, get five pieces of independent information from these equations. In other words, the
specified dynamic must have at most fiveunknownsin it. Consider the following three-period
binomial tree:

���
���

������
���

���

Luu
2

Lu
1

Lud
2L0

Ldu
2

Ld
1

Ldd
2

(70)

The dynamic has seven unknowns, namely{L0, L
u
1 , Ld

1, L
ud
2 , Ldu

2 , Ldd
2 , Luu

2 }. That is two
morethan the number of equations we have.At least two unknowns must be eliminated by impos-
ing additional restrictions on the model. These will come from the specification of variances, as
we will now see.

3.3.2. The Variance of Li

The spot Libor rateLi, i = 0, 1, 2 has a binomial specification. This means that at any node,
the spot rate can take one of only two possible values. Thus, thepercentagevariance ofLi,
conditional on statej at “time” i, is given by13

Var(Li|j) = EP̃
[
(ln(Li) − ln(L̄i))2|j

]
(71)

13 We calculate the percentage volatility because caps/floors markets quote volatility this way, by convention.
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where

ln L̄i = EP̃ [ln(Li)|j] (72)

is the conditional expected value ofLi.
We now make two additional assumptions. The first assumption is for notational purposes

only. We letj = u, and hence assume that we are in an “up” state. The outcome forj = d will
be similar.

Second, we let

pu
i =

1
2

∀i (73)

pd
i =

1
2

∀i (74)

That is to say, we assume that the up-and-downrisk-neutralprobabilities are constant over
the life of the tree and that they are equal. We will see that this assumption, which at first may
look fairly strong, is actually not a restriction. Using these assumptions and the binomial nature
of the Libor rate, we can immediately calculate the following:14

EP̃ [ln(Li)|j = u] = pu ln(Luu
i ) + (1 − pu) ln(Lud

i ) (75)

=
1
2
[ln(Luu

i ) + ln(Lud
i )] (76)

Replacing this in equation (71) gives

Var(Li|j = u) = EP̃

[(
ln(Li) − 1

2
[
ln(Luu

i ) + ln(Lud
i )

])2

|j = u

]
(77)

Simplifying and regrouping, we obtain

Var(Li|j = u) =
(

1
2
[− ln(Luu

i ) + ln(Lud
i )

])2

(78)

This means that the volatility at timei, in stateu, is given by

σu
i =

1
2

ln
[
Luu

i

Lud
i

]
(79)

The result for the down state will be similar:

σd
i =

1
2

ln
[
Ldu

i

Ldd
i

]
(80)

These volatility estimates are functions of the possible values that the Libor rate can take during
the subsequent period. Hence, given the market quotes on Libor volatilities, these formulas can
be solved backward to obtain theLuu

i , Lud
i . We will do this next.

14 As usual, the firstu in the superscript denotes the direction of the node for which the calculation is made, and the
second superscript denotes where the Libor rate will go from there.
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3.4. Calibrating the Tree

The elements of the tree can now be calibrated to the observed prices. Using the assumptions
concerning (1) the binomial nature for the processLi, (2) thatpu = pd = 1/2, and (3) that the
tree is recombining, we get the following five equations:

B(t0, t1) =
1

(1 + L0)
(81)

B(t0, t2) =
1
2

1
(1 + L0)(1 + Lu

1 )
+

1
2

1
(1 + L0)(1 + Ld

1)
(82)

B(t0, t3) =
1
4

[
1

(1 + L0)(1 + Lu
1 )(1 + Luu

2 )

]
+

1
4

[
1

(1 + L0)(1 + Lu
1 )(1 + Lud

2 )

]

+
1
4

[
1

(1 + L0)(1 + Ld
1)(1 + Ldu

2 )

]
+

1
4

[
1

(1 + L0)(1 + Ld
1)(1 + Ldd

2 )

]
(83)

1
2

ln
[
Lu

1

Ld
1

]
= .15 (84)

1
2

ln
[
Luu

2

Lud
2

]
= .20 (85)

Of these equations, the first and second are straightforward. We just applied the risk-neutral
measures to price the benchmark bonds. When weighted by these probabilities, the values of
future payoffs discounted by the Libor rates become Martingales and hence, equal the current
price of the appropriate bond. See Figure 12-1.

The third equation represents the pricing function for the bond that matures at timet = 3. It
is interesting to see what it does. According to the tree used here, there are four possible paths
the Libor rate can take duringt = 0, 1, 2. These are

{L0, L
u
1 , Luu

2 } (86)

{L0, L
u
1 , Lud

2 } (87)

{L0, L
d
1, L

du
2 } (88)

{L0, L
d
1, L

dd
2 } (89)
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Due to the way probabilities,pu andpd, are picked in this model, each path is equally likely
to occur. This gives the third equation.

The last two equations are simply the volatilitiesat each node. We see that as the volatilities
depend only on the time indexi,

1
2

ln
[
Luu

2

Lud
2

]
= .20 (90)

1
2

ln
[
Ldu

2

Ldd
2

]
= .20 (91)

which means that

Luu
2 Ldd

2 = Lud
2 Ldu

2 (92)

This adds another equation to the five listed earlier, and makes the number of unknowns equal
to the number of equations. Under the further assumption that the tree is recombining, we have

Luu
2 Ldd

2 = (Lud
2 )2 (93)

Now equations (81)–(85) and (92)–(93) can be solved for the seven unknowns{L0, L
u
1 , Ld

1,
Luu

2 , Ldu
2 , Lud

2 , Ldd
2 }.

The simplest way to solve these equations is to start fromi = 0 and work forward, since
the system is recursive. It is trivial to obtainL0 from the first equation. The second and fourth
equations giveLu

1 , Ld
1, and the remaining three equations give the last three unknowns. There is

one caveat. The system of equations (81) to (85) is not linear. Hence, a nonlinear hill-climbing
solution procedure must be used to determine the unknowns.

Example:

The situation is shown in the figure below. There are three periods. Hence, we have three
discounts given by the corresponding zero-coupon bond prices and three volatilities. The
first volatility is zero, since we do know the value ofL0.

The system in equations (81) to (85) can be solved recursively. First, we solve forL0,
then forLu

1 andLd
1, and last for the timet = 2 Libor rates. The nonlinear equations

solved using Mathematica yield the following results:

�����
����	

�����
����	
�����
����	 Luu

2 = 11.8%
Lu

1 = 6.39%
L0 = 5.26% Lud

2 = Ldu
2 = 7.9%

Ld
1 = 4.73%

Ldd
2 = 5.3%

(94)

We now discuss how BDT trees that give arbitrage-free paths for Libor rates or other spot rates
can be used.

3.5. Uses of the Tree

Arbitrage-free trees have many uses. (1) We can price baskets of options written on the Libor
ratesLi. These are called caps and floors and are very liquid. (2) We can use the tree to price
swaps and related derivatives. (3) Finally, we can use the tree to priceforwardcaps, floors, and
swaps. We discuss one example below.
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3.5.1. Application: Pricing a Cap

A caplet is an option written on a particular Libor rateLti
. A cap rate,LK , is selected as

a strike price, and the buyer of the caplet is compensated if the Libor rate moves above
LK . See Figures 12-2 and 12-3. The expiration date isti, and the settlement date isti+1.
A caplet then “caps” the interest cost of the buyer. A sequence of consecutive caplets written on
Lti , Lti+1 , . . . , Lti+τ forms aτ periodcap. Suppose we have the following caplet to price:

• Theti are such thatti − ti−1 = 12 months.
• At time t2, the Libor rateLt2 will be observed.
• A notional amountN is selected at timet0. Let it be given by

N = $1 million (95)

K 5 ft0

Libor for the
caplet subperiod

Slope 5N �

An ATM caplet
strike equals the forward rate for the cap period

Caplet payoff

FIGURE 12-2

K 5 ft0

Slope 5 2N �

Floorlet payoff

Libor for the
  floorlet subperiod

An ATM floorlet
strike equals the forward rate for the floor period

FIGURE 12-3
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• If the Libor rateLt2 is in excess of thecap rateLK = 6.5%, the client will receive
payoff:

C(t3) =
N(Lt2 − LK)

100
(96)

at timet3. Otherwise the client is paid nothing.
• For this “insurance,” the client pays a premium equal toC(t0).

The question is how to determine an arbitrage-free value of the caplet premiumC(t0). The
fundamental theorem says that the expected value of the expiration-date payoff, discounted
by the risk-free rate, will equalC(t0) if we evaluate the expectation using the risk-neutral
probability. That is to say, remembering that we haveδ = 1,

C(t0) = EP̃
t0

[
C(t3)

(1 + Lt0)(1 + Lt1)(1 + Lt2)

]
(97)

with expiration payoff

C(t3) = Nmax
[
(Lt2 − LK)

100
, 0

]
(98)

The pricing of the caplet is done with the BDT tree determined previously. In the example,
the tree had four possible trajectories, each occuring with probability 1/4. Using these we can
calculate the caplet price.

According to the BDT tree, the caplet ends in-the-money in three of the four trajectories.
Calculating the possible payoffs in each case and then dividing by the discount factors, we get
the numerical equivalent of the expectation in equation (98).

C0 = .25
[

53000
(1.0526)(1.0639)(1.118)

+
14400

(1.0526)(1.0473)(1.0793)

+
14400

(1.0526)(1.0639)(1.0793)

]

= $16,587

We should emphasize that under these circumstances the discount factors are random variables.
Theycannotbe taken out of the expectation operator.Also, the center node, which is recombining
and, hence, leads to the same value forLud

2 andLdu
2 , still requires different discount factors

since the average interest rate is different across the two middle trajectories.

3.5.2. Some Assumptions of the Model

It may be worthwhile to summarize some of the assumptions that were used in the previous
discussion.

• The BDT approach is an example of a one-factor model, since the short rate, here
represented by the Libor rateLi, is assumed to be the only variable determining bond
prices. This means that bond prices are perfectly correlated.

• The distribution of interest rates is lognormal in the limit.
• We made several simplifying assumptions concerning the framework.There were neither

taxes, nor any trading costs.

Needless to say, the procedure also rests on the premise that the original data are arbitrage-free.
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3.5.3. Remarks

The BDT approach may be considered simplistic. Yet, until the advent of the Forward Libor
Model that we will introduce in the next chapter, market professionals preferred to stay with
the BDT approach given the more sophisticated alternatives. A simple model may not fit reality
exactly, but may have three important advantages.

1. If the model depends on few parameters, then few parameters have to be determined and
the chance of error is less.

2. If the model is simple, a trader or risk manager will accumulate some personal experience
in how to adjust for weaknesses of the model.

3. Simple models whose weaknesses are well known and well tried may be better than more
sophisticated models with no track record.

We will see that another model with known weaknesses, namely the Black-Scholes model, is
preferred by traders for similar reasons.

3.6. Real-World Complications

The BDT model as used in the previous example is, of course, based on symbolic parameters,
such as two states, readily available pure discount bond prices, and so on. And as mentioned
earlier, it rests on several restrictive assumptions.

In a real-world application the following additions to the example discussed above need to
be made. (1)Day-count conventionsneed to be checked and corrected for, (2)settlementmay
be done at timet = 2, then further discounting may be needed fromt = 3 to t = 2, and (3) in
market applications, caps consisting of several caplets instead of a single caplet are priced.

4. Application 3: Quantos

The first two examples of the application of the fundamental theorem shown thus far were
essentially numerical. The pricing of quanto contracts constitutes another application of the
fundamental theorem. This requires a conceptual discussion. It is a good example of how the
techniques introduced in Chapter 11 can be used inmodeling. The section is also intended to
complete the discussion of the financial engineering aspects of quantoed assets that we started
in Chapter 9.

A quantoed foreign assetmakes future payoffs in the domestic currency at a known exchange
rate. An exchange rate,xt, is chosen at initiation, to settle the contract at timeT . For example,
using quantos, a dollar-based investor could benefit from the potential upside of a foreign stock
market, while eliminating the implicit currency exposure to exchange rate movements.

4.1. Pricing Quantos

The following application of the fundamental theorem starts with pricing aquanto forward. Let
S∗

t be a foreign stock denominated in the foreign currency. Letxt be the exchange rate defined
as the number ofdomestic currency, per 1 unit offoreign currency. The fundamental theorem
can be used with the domestic risk-neutral measureP̃ to obtain the time-t0 value of the forward
contract:

V (t0) = e−r(T−t0)EP̃
t0xt0 [S

∗
T − Ft0 ] (99)
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TheFt0 is the time-T forward value of the foreign stock. It is measured in foreign currency.
Setting theV (t0) equal to zero gives the forward valueFt0 :

Ft0 = EP̃
t0 [S

∗
T ] (100)

Thus, in order to calculateFt0 we need to evaluate the expectation of the foreign currency
denominatedS∗

T under thedomesticrisk-neutral measurẽP :

EP̃
t0 [S

∗
T ]. (101)

The fact that the state prices,Qi, in the fundamental theorem are denominated in the domestic
currency, whereas theS∗

t is denominated in the foreign currency, makes this a nontrivial exercise.
But, if used judiciously, the fundamental theorem can still be expolited for obtaining the

expectation in equation (101). To maintain continuity, we use the simple framework developed
in Chapter 11. In particular, we assume that there are only two periods,t0 andT , with n states
of the world at timeT . The notation remains the same.

Consider the matrix equation of the fundamental theorem for three assets. The first is the
domestic savings accountBt which starts at 1 dollar and earns the domestic annual rater. The
second is a foreign savings account,B∗

t , which starts with 1 unit of the foreign currency and
earns the foreign interest rater∗. These interest rates are assumed to be constant. The foreign
currency has dollar valuext0 at timet0. Finally, we have the foreign stock,S∗

t0 .
Putting these into the matrix equation implied by the fundamental theorem we get

⎛
⎝ 1

xt0

xt0S
∗
t0

⎞
⎠ =

⎛
⎝ 1 + r(T − t0) · · · 1 + r(T − t0)

x1
T [1 + r∗(T − t0)] · · · xn

T [1 + r∗(T − t0)]
x1

T S∗1
T · · · xn

T S∗n
T

⎞
⎠

⎛
⎜⎜⎜⎜⎝

Q1

· · ·
· · ·
· · ·
Qn

⎞
⎟⎟⎟⎟⎠ (102)

Here, thexi
T andS∗i

T havei superscripts because their time-T value depends on the state that
is realized at that time. This system involves domestic state prices, and therefore the value
of the foreign stockS∗

t0 is converted into domestic currency by multiplying withxt0 . The
Qi, i = 1, . . . , n are the state prices assumed to be known and positive.

We start with two results that are obtained by following the methods shown in Chapter 11.
Define the domestic risk-neutral measureP̃ as

p̃i = (1 + r(T − t0))Qi (103)

Then, from the third row of (102) we obtain the equality,

xt0S
∗
t0 =

1
1 + r(T − t0)

n∑
i=1

xi
T S∗i

T p̃i (104)

This means that

xt0S
∗
t0 =

1
1 + r(T − t0)

EP̃
t0 [xT S∗

T ] (105)

Using the second row of the system in (102), we obtain a similar equality for the exchange
rate. After switching from theQi to the risk-neutral probabilities̃P ,

xt0 =
1 + r∗(T − t0)
1 + r(T − t0)

EP̃
t0 [xT ] (106)
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We use equations (105) and (106) in calculating the desired quantity,EP̃
t0 [S

∗
T ]. We know from

elementary statistics that

Cov(S∗
T , xT ) = EP̃

t0 [S
∗
T xT ] − EP̃

t0 [S
∗
T ]EP̃

t0 [xT ] (107)

Rearranging, we can write:

EP̃
t0 [S

∗
T ] =

EP̃
t0 [S

∗
T xT ] − Cov(S∗

T , xT )

EP̃
t0 [xT ]

(108)

We substitute in the numerator from equation (105) and in the denominator from (106) to obtain

EP̃
t0 [S

∗
T ] =

[1 + r(T − t0)]xt0S
∗
t0 − Cov(S∗

T , xT )

xt0

[
1+r(T−t0)
1+r∗(T−t0)

] (109)

We prefer to write this in a different form using the correlation coefficient denoted byρ, and
the percentage annual volatilities ofxt andS∗

t denoted byσx, σs respectively. Let

Cov(S∗
T , xT ) = ρσxσs(xt0S

∗
t0)(T − t0) (110)

The expression in (109) becomes

EP̃
t0 [S

∗
T ] =

1 + r∗(T − t0)
1 + r(T − t0)

[1 + (r − ρσxσs)(T − t0)]S∗
t0 (111)

We can approximate this as15

EP̃
t0 [S

∗
T ] ∼= [1 + (r∗ − ρσxσs)(T − t0)]S∗

t0 (112)

This gives the foreign currency denominated price of the quanto forward in the domestic cur-
rency:

Ft0
∼= [1 + (r∗ − ρσxσs)(T − t0)]S∗

t0 (113)

The present value of this in domestic currency will be the spot value of the quanto:

Vt0 = xt0

1
1 + r(T − t0)

[1 + (r∗ − ρσxσs)(T − t0)]S∗
t0 (114)

We can also write this relationship by reinterpreting the interest rates as continuously com-
pounded rates:

Vt0 = e−r(T−t0)e(r∗−ρσxσs)(T−t0)xt0S
∗
t0 (115)

According to this expression, the value of the quanto feature depends on the sign of the cor-
relation between exchange rate movements and the value of the foreign stock. If this correlation
is positive, then the quanto feature is negatively priced. If the correlation is negative, the quanto
feature has positive value.16 If the correlation is zero, the quanto feature has zero value.

15 We are using the approximation

1
1 + z

= 1 − z

for smallz. In the approximation, we ignore all terms of order(T − t0)2 and higher.

16 Suppose the correlation is positive. Then, when foreign stock’s value goes up, in general, the foreign currency will
also go up. The quanto eliminates this opportunity from the point of view of a stockholder, and hence, has a negative
value and the quantoed asset is cheaper.
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4.2. The PDE Approach

Our next example shows how the fundamental theorem can be used to obtain Partial Differential
Equations (PDE) for quanto instruments. The treatment will be in continuous time and is essen-
tially heuristic. Consider the same two-currency environment. The domestic and foreign savings
deposits are denoted byBt andB∗

t respectively. The correspondingcontinuously compounded
rates are assumed to be constant, for simplicity, atr andr∗. This means that the savings account
values increase incrementally according to the following (ordinary) differential equations:

dBt = rBtdt t ∈ [0, ∞) (116)

dB∗
t = r∗B∗

t dt t ∈ [0, ∞) (117)

Let xt be the exchange rate expressed as the domestic currency price of 1 unit of foreign
currency. Thext satisfies the SDE:

dxt = μxxtdt + σxxtdW1t t ∈ [0, ∞) (118)

under the appropriate Martingale measure.
First we obtain the exchange rate dynamics under theBt normalization. Note thatB∗

t is a
traded asset and its price in domestic currency isxtB

∗
t . According to the results obtained in

Chapter 11, withBt normalization, and the corresponding risk-neutral measureP̃ , the ratio

xtB
∗
t

Bt
(119)

should behave as a Martingale. This means that the drift of the implied dynamics should be zero.
Taking total derivatives,17

EP̃
t

[
d
xtB

∗
t

Bt

]
= EP̃

t

[
B∗

t

Bt
dxt +

xt

Bt
dB∗

t − xtB
∗
t

B2
t

dBt

]
= 0 (120)

Replacing from (116), (117), and (118), we obtain18

B∗
t

Bt
μxxtdt +

xt

Bt
r∗B∗

t dt − xtB
∗
t

B2
t

rBtdt =
xtB

∗
t

Bt
[μx + r∗ − r]dt (121)

In order for this drift to be zero, we must have, underP̃ , at all times:

μx + r∗ − r = 0 (122)

Replacing this drift in (118) gives the exchange rate dynamics under theP̃ :

dxt = (r − r∗)xtdt + σxxtdW1t t ∈ [0, ∞). (123)

Next, consider thẽP -dynamics of the foreign stockS∗
t .

dS∗
t = μsS

∗
t dt + σsS

∗
t dW2t t ∈ [0, ∞) (124)

17 We are using differentials inside an expectation operator. We emphasize that this is heuristic since stochastic
differentials are only symbolic ways of expressing some limits.

18 For readers familiar with stochastic calculus, the second-order terms from Ito’s Lemma are zero since thext

enters the formula linearly. Also,Bt is deterministic.
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Under theBt normalization, the domestic currency value of the foreign stock should behave
as a Martingale. Applying Ito’s Lemma:

EP̃
t

[
d
xtS

∗
t

Bt

]
= EP̃

t

[
S∗

t

Bt
dxt +

xt

Bt
dS∗

t − xtS
∗
t

B2
t

dBt +
dxtdS∗

t

Bt

]
= 0 (125)

Replacing the differentials and simplifying, we obtain

S∗
t

Bt
(r − r∗)xt +

xt

Bt
μsS

∗
t − xtS

∗
t

B2
t

rBt +
ρσxσsxtS

∗
t

Bt
(126)

=
xtS

∗
t

Bt
[(r − r∗) + μs − r + ρσxσs] = 0

In order for this drift to be zero we must have, underP̃ , at all times:

μs = r∗ − ρσxσs (127)

This gives the arbitrage-free stock price dynamics:

dS∗
t = (r∗ − ρσxσs)S∗

t dt + σsS
∗
t dW2t t ∈ [0, ∞) (128)

These dynamics imply that:

EP̃
t [S∗

T ] = e(r∗−ρσxσs)(T−t)S∗
t (129)

as derived in the previous section. Here the interest ratesr andr∗ should be interpreted as
continuously compounded rates. In the previous section they were actuarial rates for the period
T − t0.

4.2.1. A PDE for Quantos

Finally, using these results we can obtain a PDE for an arbitrary quanto asset written on a risk
associated with a foreign economy. Let this foreign currency denominated asset be denoted by
S∗

t . Let Vt denote the time-t value of the quanto,

V (t) = xtV (S∗
t , t) (130)

The V (.), being a pricing function of the asset, needs to be determined. Thext is the initial
exchange rate written in the quanto contract and, hence, theV (t) is expressed in domestic
currency terms. Under theBt normalization,V (t) should behave as a Martingale. Applying
Ito’s Lemma we obtain:19

EP̃
t

[
d
V (t)
Bt

]
= EP̃

t

[
Vt

Bt
dt +

Vs

Bt
dS∗

t − V

B2
t

dBt +
1
2

Vssσ
2
s(S∗

t )2

Bt
dt

]
= 0 (131)

Replacing the stochastic differentials and simplifying yields the implied PDE,

Vt + (r∗ − ρσxσs)S∗
t Vs +

1
2
Vssσ

2
s(S∗

t )2 − rV = 0 (132)

with the terminal condition:

V (T ) = xtV (S∗
T , T ) (133)

We apply this PDE to two special cases.

19 In this expression theVt is the partial derivative ofV (.) with respect tot and should not be confused withV (t).
Also, Chapter 8 contains a brief appendix that discusses Ito’s Lemma. For related heuristics see Neftci (2000). For a
formal treatment see Øksendal (2003).
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4.3. Quanto Forward

Suppose we know that a quanto forward has the value,

V (t) = q(t)S∗
t (134)

but that the time dependent functionq(t) is unknown. The PDE derived in the previous section
can be used to solve for theq(t). Differentiating equation (134) we get the partial derivatives:

Vt =
∂q(t)
∂t

S∗
t = q̇S∗

t (135)

Vs = q(t) (136)

Vss = 0 (137)

We replace these in the PDE for the quanto,

q̇S∗
t + (r∗ − ρσxσs)q(t) S∗

t − rq(t) S∗
t = 0 (138)

with the terminal condition,

V (T ) = xtS
∗
T (139)

Eliminating the commonS∗
t terms, this ordinary differential equation can be solved forq(t):

q(t) = xte
(r∗−ρσxσs)(T−t) (140)

This is the same result obtained earlier.

4.4. Quanto Option

Suppose the payoffV (T ) of a quanto asset relates to the payoff of a European call on a foreign
stockS∗

t :

VT = xtmax[S∗
T − K∗, 0] (141)

Here theK∗ is a foreign currency denominated strike price, andT is the expiration date. Then
the PDE derived in equation (132) can be solved using the equivalence with the Black-Scholes
formula to obtain the pricing equation for a European quanto call:

C(t) = xt

[
S∗

t e(r∗−r−ρσxσs)(T−t)N(b1) − K∗e−r(T−t)N(b2)
]

(142)

where

b1 =
lnS∗

t

K∗ + (r∗ − ρσxσs + .5σ2
s)(T − t)

σs

√
T − t

(143)

b2 = b1 − σs

√
T − t (144)

The value of the call will be measured in domestic currency.
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4.4.1. Black-Scholes and Dividends

We now explain how to trick the PDE in equation (132) in order to arrive at the Black-Scholes
type formula for the simple quantoed equity option shown above. To do this we need the
equivalent of the Black-Scholes formula in the case of a constant rate of dividends paid by the
underlying stock during the life of the option.

Standard derivations in the Black-Scholes world will give the European call premium on a
stock,St, that pays dividends at a constant rateQ as,

C(t) = e−Q(T−t)StN(d̃1) − Ke−(r)(T−t)N(d̃2) (145)

with

d̃1 =
lnSt

K + (r − Q + .5σ2
s)(T − t)

σs

√
T − t

(146)

d̃s = d̃1 − σs

√
T − t (147)

whereSt is the dividend paying stock.
Now, note that we can write the PDE in equation (138) as

Vt + (r − Q)S∗
t Vs +

1
2
Vssσ

2
s(S∗

t )2 − rV = 0 (148)

whereQ is treated as a dividend yield, and is given by

Q = r − r∗ + ρσxσs (149)

We can then use thisQ in the standard Black-Scholes formula with a known dividend yield to
get the quantoed call premium.

4.5. How to Hedge Quantos

Quanto contracts require dynamic hedging. The dealer would form a portfolio made of the
underlying foreign asset, the foreign currency (or, better, an FX-forward), and the domestic
lending and borrowing. The weights of this portfolio would be adjusted dynamically, so that
the portfolio replicates the changes in value of the quanto contract. The trading gains (losses)
realized from these hedge adjustments form the basis for the quanto premium or discount.

4.6. Real-Life Considerations

The discussion of quantoed assets in this section has been in a simple, abstract, and unrealistic
world. We used the following assumptions, among others: (1) The underlying processes were
assumed to be lognormal, so that the implied SDEs weregeometric. (2) The correlation coef-
ficient and the volatility parameters were assumed to beconstantduring the life of the option.
(3) Similarly, interest rateswere assumed to be constant, although the corresponding exchange
rate was stochastic.

These assumptions are not satisfied in most real-world applications. Especially important
for quantos, the correlation coefficients between exchange rates and various risk factors are
known to be quite unstable. The models discussed in this section therefore need to be regarded
as a conceptual application of the fundamental theorem. They do not provide an algorithm for
pricing real-world quantos.
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5. Conclusions

This chapter dealt with three applications of the fundamental theorem of asset pricing. In gen-
eral, a financial engineer needs to use such approaches when static replication of the assets
is not possible. Mark-to-market requirements or construction of new products often requires
calculating arbitrage-free prices internally without having recourse to synthetics that can be put
together using liquid prices observed in the markets. The methods outlined in this chapter show
some standard ways of doing this.

Suggested Reading

There are several sources the reader may consult to learn more on the methods introduced in
this chapter via some simple examples. One of our preferred sources isClewlow and Strickland
(1998), which provides some generic codes for computer applications as well. A recent book that
deals with the topic of Monte Carlo in finance isJackel (2002). The series of articles referenced
in Avellaneda et al. (2001) provides an in-depth discussion of calibration issues. Finally, the
original Black, Derman, and Toy (1985) model is always an illuminating reading on the BDT
model. For quanto assets, and related discussion, considerHull (2008).Wilmott (2000) is very
useful for learning further application of the techniques presented here.
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Exercises

1. You observe the following default-free discount bond pricesB(t, Ti), where time is
measured in years:

B(0, 1) = 95, B(0, 2) = 93, B(0, 3) = 91, B(0, 4) = 89 (150)

These prices are assumed to be arbitrage-free. In addition, you are given the following
cap-floor volatilities:

σ(0, 1) = .20, σ(0, 2) = .25, σ(0, 3) = .20, σ(0, 4) = .18 (151)

whereσ(t, Ti) is the (constant) volatility of the Libor rateLTi
that will be observed atTi

with tenor of 1 year.

(a) Using the Black-Derman-Toy model, calibrate a binomial tree to these data.
(b) Suppose you are given a bond call option with the following characteristics.

The underlying,B(2, 4), is a two-period bond, expirationT = 2, strike
KB = 93. You know that the BDT tree is a good approximation to
arbitrage-free Libor dynamics. What is theforwardprice ofB(2, 4)?

(c) Calculate the arbitrage-free value of this call option using the BDT approach.

2. You know that the euro/dollar exchange rateet follows the real-world dynamics:

det = μdt + .15etdWt (152)

The current value of the exchange rate iseo = 1.1015. You also know that the price
of a 1-year USD discount bond is given by

B(t, t + 1)US = 98.93 (153)

while the corresponding euro-denominated bond is priced as

B(t, t + 1)EU = 98.73 (154)

Both of these prices are arbitrage-free and there is no credit risk.

(a) What are the 1-year Libor rates in these two currencies at timet?
(b) What are the continuously compounded interest ratesrUS

t , rEUR
t ?

(c) Obtain the arbitrage-free dynamics of theet. In particular, state clearly whether
we need to use continuously compounded rates or Libor rates to do this.

(d) Is there a continuous time dynamic that can be written using the Libor rates?

3. Consider again the data given in the previous question.

(a) UseΔ = 1 year to discretize the system.
(b) Generate five sets of standard normal random numbers with five random

numbers in each set. How do you know that these five trajectories are
arbitrage-free?

(c) Calculate the value of the following option using these trajectories. The strike is
.95, the expiration is 3 years, and the European style applies.



372 C H A P T E R 12. Some Applications of the Fundamental Theorem

4. Suppose you know that the current value of the peso-dollar exchange rate is 3.75 pesos
per dollar. The yearly volatility of the Mexican peso is 20%.

The Mexican interest rate is 8%, whereas the U.S. rate is 3%. You will price a dollar
option written on the Mexican peso. The option is of European style, and has a maturity
of 270 days. All processes under consideration are known to be geometric.

(a) Price this option using a standard Monte Carlo model. You will select the
number of series, the size of the approximating time intervals, and other
parameters of the Monte Carlo exercise.

(b) Now assume that Mexico’s foreign currency reserves follow a geometric SDE
with a volatility of 10% and a drift coefficient of 5% a year. The current value
of reserves is USD7 billion. If reserves fall below USD6 billion, there will be a
one-shot devaluation of 100%. Is this information important for pricing the
option? Explain.

(c) Use importance sampling to reprice the option. Your pricing is supposed to
incorporate the risk of devaluation.


